活性炭的主要的组成原材料几乎能是所有富含碳的有机材料,如煤、木材、果壳、椰壳、核桃壳等。这些含碳材料在活化炉中,在高温和很多压力下通过热解作用被转换成活性炭。在此活化过程中,巨大的表面积和复杂的孔隙结构逐渐形成,而所谓的吸附过程正是在这些孔隙中和表面上进行的,活性炭中孔隙的大小对吸附质有选择吸附的作用,这是由于大分子不能进入比它孔隙小的活性炭孔径内的缘故。
颗粒活性炭常常应用于吸附分子,颗粒活性炭吸附性决定应用性,而吸附性和各种炭型的孔大小分布相关。以水蒸气活化的泥煤基、褐煤基和椰壳基粉状活性炭为例:泥煤基活性炭具有微孔和中孔,颗粒活性炭可供多种应用;褐煤基炭具中孔较多,颗粒活性炭并且还有较大的中孔,提供优良的可入性;椰壳基颗粒活性炭中主要是微孔,仅适用于低分子的去除。
利用化学品活化的颗粒活性炭是非常多孔的,多在微孔和中孔范围,但是,比较水蒸气活化的活性炭、化学品活化的活性炭的孔表面是较少疏水性和较多负电荷。以挤压型和破碎型粒状活性炭为例:泥煤基挤压型活性炭能制作成各种不同孔大小分布的品种。颗粒活性炭微孔为主的品种大多数都用在气相应用的黄金回收。既有微孔又有中孔的品种大都用于液相应用,如水纯化中吸附小分子和大分子的杂质。
破碎型煤基颗粒活性炭兼有微孔和中孔,可供多种目的的应用。褐煤基或椰壳基的粒状活性炭与粉状炭一样具有相同的微孔和中孔结构。活性炭的技术指标很重要:活性炭产品的性能指标可分为物理性能指标、活性炭化学性能指标、颗粒活性炭吸附性能指标。三种性能指标对活性炭的选择和应用都起到很重要的作用。活性炭主要物理性能指标有:形状、外观、比表面积、孔容积、比重、目数、粒度、耐磨强度、漂浮率等。
颗粒活性炭主要化学性能指标有:PH值、灰分、水分、着火点、未炭化物、硫化物、氯化物、氰化物、硫酸盐、酸溶物、醇溶物、铁含量、锌含量、铅含量、砷含量、钙镁含量、重金属含量、磷酸盐等。活性炭主要吸附性能指标有:亚甲蓝吸附值、碘吸附值、苯酚吸附值、四氯化碳吸附值、焦糖吸附值、硫酸奎宁吸附值、饱和硫容量、穿透硫容量、水容量、氯乙烷蒸汽防护时间、ABS值等。
果壳活性炭被大范围的应用于生活用水、工业用水和废水的深度净化及气相吸附,如石油化学工业、电厂、餐饮、制糖制酒、医药、养鱼等行业水质净化处理,能有效吸附水中的游离氯、酚、硫和其它有机污染物,特别是致突变物(THM)的前驱物质,达到过滤除杂去异味。还可用于车间尾气净化、溶剂过滤、脱色、提纯等,气体脱硫、石油催化重整,气体分离、变压吸附、空气干燥、食品保鲜、防毒面具、解媒载体,有机溶剂回收;贵重金属提炼;化学工业中的催化剂及催化剂载体等功能。
针剂活性炭价格大约在13500元/吨;糖用粉状活性炭一等品12000元/吨;脱色用粉状活性炭价格在11000元/吨,自来水公司用粉状活性炭价格在7500元/吨。
由于原料来源、制造方法、外观形状和应用场合不同,环保活性炭的种类很多,到为止尚无精确的统计材料,大约有上千个品种。
怎样制作活性炭?活性炭制作流程有哪些?简而言之,活性炭的制作分碳化及活化两步。
碳化也称热解,是在隔绝空气的条件下对原材料加热,一般温度在600℃以下。有时原材料先经无机盐溶解处理后再碳化。活性炭原材料经碳化后,会分解放出水气、一氧化碳、二氧化碳及氢等气体;原料分解成碎片,并重新结合成稳定的结构。这些碎片可能是由一些微晶体组成。微晶体是由两片以上的、有碳原子以六角晶格排列的片状结构堆积而成。但堆积无固定的晶型。微晶体的大小和原材料的成份和结构有关,并受碳化温度的影响,大致是随碳化温度的升高而增大的。碳化后微晶体边界原子上还附有一些残余的碳氢化合物。
活化是在有氧化剂的作用下,对碳化后的材料加热,以生产活性炭产品。当氧化过程的温度在800-900℃时,一般用蒸汽或二氧化碳为氧化剂;当氧化温度在600℃以下时,一般用空气做氧化剂。在活化过程中,烧掉了碳化时吸附的碳氢化合物,把原有空隙边上的碳氢原子烧掉,起了扩大孔隙的作用,并把孔隙与孔隙之间烧穿。活化使活性炭变成一种良好的多孔结构,碳化及活化后的晶体片状结。
活性炭只有专门的企业才可以生产,而且生产设备不是一般的庞大,特别是治理装修污染的活性炭,制作流程与工艺更是复杂,而且并不是所有的活性炭都可以治理装修污染,有些是用来净水的,有些是用来净化空气的,从材质上分为煤质,木质,果壳等。
专业活性炭生产厂商温馨提示:自己制作活性炭很不靠谱,这种精细化工产品不适合DIY。
椰壳活性炭是选用优质椰子壳为原料,经系列生产的基本工艺精制而成。产品具有发达的孔隙结构,比表面积大,吸附能力强等功能!一般适用于高纯度的生活饮用水、工业用水和废污水处理等领域。特别优点是深度净化脱氯、脱色、除臭等特点!
主要用于食品、饮料、酒类、空气净化活性炭和高纯饮用水的除臭、去除水中重金属、除氯及液体脱色。并可大范围的使用在化学工业的溶剂回收和气体分离等。
椰壳活性炭选用优质绿色环保的椰子壳为原料,经过高温活化及特殊孔径调节工艺处理,外观呈黑色颗粒状。它的孔隙结构发达,是普通活性炭的5倍,其比表面积为1500m2/g(一般活性炭比表面积为700m2/g),特别是孔结构与众不同,孔隙直径大于0.45nm且小于2nm微孔占总数90%以上。
果壳活性炭被大范围的应用于饮用水、工业用水和废水的深度净化生活、工业水质净化及气相吸附,如电厂、石化、炼油厂、餐饮、制糖制酒、医药、电子、养鱼、海运等行业水质净化处理,能有效吸附水中的游离氯、酚、硫和其它有机污染物,特别是致突变物(THM)的前驱物质,达到净化除杂去异味。还可用于工业尾气净化、气体脱硫、石油催化重整,气体分离、变压吸附、空气干燥、食品保鲜、防毒面具、解媒载体,工业溶剂过滤、脱色、提纯等。各种气体的分离、提纯、净化;有机溶剂回收;制糖、味精、医药、酒类、饮料的脱色、除臭、精制;贵重金属提炼;化学工业中的催化剂及催化剂载体。产品更具脱色、提纯、除杂、除臭、去异味、载体、净化、回收等功能。
椰壳活性炭属于果壳活性炭类别,其主要特征是密度小、手感轻,拿在手里的重量明显比煤质活性炭轻。相同重量的活性炭,椰壳活性炭体积一般大于煤质活性炭。
椰壳活性炭形状一般为破碎颗粒状、片状,而成型活性炭,如柱状、球状活性炭,多为煤质炭。
因椰壳活性炭密度小,手感轻,因此能将活性炭放到水里,煤质炭一般沉底较快,而椰壳活性炭浮在水中的时间更长,随着活性炭吸附水分子达到饱和,加重自身重量才会逐步全部沉入水底,当活性炭全部沉底后,会看见每颗活性炭外面都包裹着一个小气泡,晶莹剔透,非常有趣。
4、椰壳活性炭为小分子孔隙结构,将活性炭放到水里,其吸附水分子时所排空气会产生许多非常细小的水泡(肉眼刚好能看见),密密麻麻的不停浮向水面。而煤质活性炭一般为大分子孔隙结构,所产生的气泡也相对较大。
本产品是以优质木材为原料,外形为粉末状,经高温炭化、活化及多种工序精制而成木质活性炭,具有比表面积大,活性高,微孔发达,脱色力强,孔隙结构较大等特点,孔隙结构大,能有较吸附液体中的颜色等较大的各种物质、杂质。
主要用于食品、酒类、油类、饮料、染料、化工、自来水净化、污水处理、降COD、药用活性炭等各种用途脱色。[11]
特 点:采用优质木屑、椰壳等为原料,经粉碎、混合、挤压、成型、干燥、炭化、活化而制成。
独创性:采用非粘结成型活性炭专有技术。改变传统用煤焦油、淀粉等传统粘结剂成型的办法。不含粘结剂成份,完全靠炭分子之间的亲和力和原料本身的特殊性质。科学配方,制作而成,有很大成效避免炭孔堵塞,充分的发挥丰富发达炭孔的吸附功能。
先进性:由于采用优质木屑、椰壳为原料,制成的柱状活性炭比传统的煤质柱状炭灰份低、杂质少、气相吸附值、CTC占非常大的优势。产品孔径分布合理,达到最大吸附与脱附,从而大幅度的提升产品的常规使用的寿命(平均2-3年),是普通煤质炭的1.4倍。有柱状和球形颗粒等规格。
适用性:①、气相吸附 ②、有机溶剂回收(苯系气体甲苯、二甲苯、醋酸纤维行业中的丙酮回收) ③、杂质和有害化学气体去除,废气回收 ④、炼油厂、加油站、油库过量汽油回收。
该品选用优质无烟煤作为原料精制而成,外形分别为柱状、颗粒、粉末、蜂窝状、球形等形状,具有强度高,吸附速度快,吸附容量高,比表面积较大,孔隙结构发达,孔隙大小在于椰壳活性炭和木质活性炭之间。
主要用于高端空气净化、废气净化、高纯水处理、废水净化处理、污水处理、水族、脱硫、水处理活性炭脱硝并可有效去除气体与液体中的杂质和污染物以及各种气体分离和提纯,还可大范围的使用在各种低沸点物质的吸附回收,脱臭除油等。
煤质柱状活性炭选用优质无烟煤为原料,使用先进工艺精制加工而成,外观呈黑色圆柱状颗粒;具有合理的孔隙结构,良好的吸附性能,机械强度高,易反复再生,造价低等特点;用于有毒气体的净化,废弃净化处理,工业和生活用水的净化处理,溶剂回收等方面。煤质柱状活性炭物理、化学性能分析(GB/T 7701.7-1997)
通常都认为应用活性炭没有安全问题,但实际没有绝对的安全,对活性炭应用中的安全不能掉以轻心,对活性炭的性质和不安全的可能性要有所认识。
1) 活性炭列入危险化学品名录,属自燃物品,编号42521,可燃的。着火后不会发生有焰燃烧,只是阴燃。
活性炭吸附技术在国内用于医药、化工和食品等工业的精制和脱色已有多年历史。70年代开始用于工业废水净化处理。生产实践表明,活性炭对水中微量有机污染物具有卓越的吸附性,它对纺织印染、染料化工、食品加工和有机化工等工业废水都有良好的吸附效果。正常的情况下,对废水中以BOD、COD等综合指标表示的有机物,如合成染料、表面性剂、酚类、苯类、有机氯、农药和石油化学工业产品等,都有独特的去除能力。所以,活性炭吸附法已逐步成为工业废水二级或三级处理的主要方法之一。
吸附是一种物质附着在另一种物质表面上的缓慢作用过程。吸附是一种界面现象,其与表面张力、表面能的变化有关。引起吸附的推动能力有两种,一种是溶剂水对疏水物质的排斥力,另一种是固体对溶质的亲和吸引力。废水净化处理中的吸附,多数是这两种力综合作用的结果。活性炭的比表面积和孔隙结构直接影响其吸附能力,在选择活性炭时,应根据废水的水质通过试验确定。对印染废水宜选择过渡孔发达的炭种。此外,灰分也有影响,灰分愈小,吸附性能愈好;吸附质分子的大小与炭孔隙直径愈接近,愈容易被吸附;吸附质浓度对活性炭吸附量也有影响。在一定浓度范围内,吸附量是随吸附质浓度的增大而增加的。另外,水温和pH值也有影响。吸附量随水温的升高而减少,随pH值的降低而增大。故低水温、低pH值有利于活性炭的吸附
活性炭是一种很细小的炭粒 有很大的表面积,而且炭粒中还有更细小的孔毛细管。这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体(杂质)充分接触。当这些气体(杂质)碰到毛细管被吸附,起净化作用。活性炭的表面积研究是很重要的,活性炭的比表面积检验测试的数据只有采用BET方法检测出来的结果才是真实可靠的,国内有很多仪器只能做直接对比法的检测。现阶段国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看中国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试在大多数情况下要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。F-Sorb 2400比表面积测试仪是真正可以在一定程度上完成BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb 2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。
活性炭在许多吸附过程中伴有催化反应,表现出催化剂的活性。例如活性炭吸附二氧化硫经催化氧化变成三氧化硫。
由于活性炭有特异的表面含氧化合物或络合物的存在,对多种反应具有催化剂的活性,例如使氯气和一氧化碳生成光气。
由于活性炭和载持物之间会形成络合物,这种络合物催化剂使催化活性大增,例如载持钯盐的活性炭,即使没有铜盐的催化剂存在,烯烃的氧化反应也能催化进行,而且速度快、选择性高。
由于活性炭具有发达的细孔结构、巨大的内表面积和很好的耐热性、耐酸性、耐碱性,可作为催化剂的载体。例如,有机化学中加氢、脱氢环化、异构化等的反应中,活性炭是铂、钯催化剂的优良载体。
⑴粒度:采用一套标准筛筛分法,求出留在和通过每只筛子的活性炭重量,表示粒度分布。
⑵静观密度或堆密度:饮食孔隙容积和颗粒间空隙容积的单位体积活性炭的重量。
⑶体积密度和颗粒密度:饮食孔隙容积而不饮食颗粒间空隙容积的单位体积活性炭的重量。
这些机械性质直接影响活性炭应用,例如:密度影响容器大小;粉炭粗细影响过滤;粒炭粒度分布影响流体阻力和压降;破碎性影响活性炭常规使用的寿命和废炭再生。
活性炭的吸附除了物理吸附,还有化学吸附。活性炭的吸附性既取决于孔隙结构,又取决于化学组成。
活性炭不仅含碳,而且含少量的化学结合、功能团开工的氧和氢,例如羰基、羧基、酚类、内酯类、醌类、醚类。这些表面上含有的氧化物和络合物,有些来自原料的衍生物,有些是在活化时、活化后由空气或水蒸气的作用而生成。有时还会生成表面硫化物和氯化物。在活化中原料所含矿物质集中到活性炭里成为灰分,灰分的主要成分是碱金属和碱土金属的盐类,如碳酸盐和磷酸盐等。
热再生法是应用最多,工业上最成熟的活性炭再生方法。处理有机废水后的活性炭在再生过程中,根据加热到不一样的温度时有机物的变化,大体上分为干燥、高温炭化及活化三个阶段。在干燥阶段,主要去除活性炭上的可挥发成分。高温炭化阶段是使活性炭上吸附的一部分有机物沸腾、汽化脱附,一部分有机物发生分解反应,生成小分子烃脱附出来,残余成分留在活性炭孔隙内成为“固定炭”。在这一阶段,温度将达到800~900C,为避免活性炭的氧化,一般在抽真空或惰性气氛下进行。接下来的活化阶段中,往反应釜内通入CO2、CO、H2或水蒸气等气体,以清理活性炭微孔,使其恢复吸附性能,活化阶段是整个再生工艺的关键。热再生法虽然有再生效率高、应用场景范围广的特点,但在再生过程中,须外加能源加热,投资及运行的成本较高。
生物再生法是利用经驯化过的细菌,解析活性炭上吸附的有机物,并进一步消化分解成H2O和CO2的过程。生物再生法与污水处理中的生物法相类似,也有好氧法与厌氧法之分。由于活性炭本身的孔径很小,有的只有几纳米,微生物不能进入这样的孔隙,通常认为在再生过程中会发生细胞自溶现象,即细胞酶流至胞外,而活性炭对酶有吸附作用,因此在炭表明产生酶促中心,从而促进污染物分解,达到再生的目的。生物法简单易行,投资和运行的成本较低,但所需时间比较久,受水质和温度的影响很大。
在高温高压的条件下,用氧气或空气作为氧化剂,将处于液相状态下活性炭上吸附的有机物氧化分解成小分子的一种处理方法,称为湿式氧化再生法。实验获得的活性炭最佳再生条件为:再生温度230C,再生时间1h,充氧pO20.6MPa,加炭量15g,加水量300mL。再生效率达到(455)%,经5次循环再生,其再生效率仅下降3%。活性炭表面微孔的部分氧化是再生效率下降的主要原因。
传统的活性炭再生技术除了各自的弊端外,通常还有三点共同的缺陷:⑴再生过程中活性炭损失往往较大;⑵再生后活性炭吸附能力会有明显下降;⑶再生时产生的尾气会造成空气的二次污染。因此,人们或对传统的再生技术进行改进,或探索全新的再生技术。
溶剂再生法是利用活性炭、溶剂与被吸附质三者之间的相平衡关系,通过改变温度、溶剂的pH值等条件,打破吸附平衡,将吸附质从活性炭上脱附下来。
溶剂再生法比较适用于那些可逆吸附,如对高浓度、低沸点有机废水的吸附。它的针对性较强,往往一种溶剂只能脱附某些污染物,而水处理过程中的污染物种类非常之多,变化不定,因此一种特定溶剂的应用场景范围较窄。
电化学再生法是一种正在研究的新型活性炭再生技术。该方法将活性炭填充在两个主电极之间,在电解液中,加以直流电场,活性炭在电场作用下极化,一端成阳极,另一端呈阴极,形成微电解槽,在活性炭的阴极部位和阳极部位可分别发生还原反应和氧化反应,吸附在活性炭上的污染物大部分因此而分解,小部分因电泳力作用发生脱附。该方法操作方便且效率高、能耗低,其处理对象所受局限性较小,若处理工艺完善,能够尽可能的防止二次污染。
实验根据结果得出,电化学再生活性炭具有较高的再生效率,可达到90%。此外,对工艺参数的研究表明,再生位置是活性炭再生工艺中最重要的影响因素,电解质NaCl浓度是较重要的影响因素,再生电流和再生时间对活性炭的电化学再生也有一定的影响。
据最近的研究资料表明,在CO2的临界点附近,再生效率的变化很大;对未被烘干的活性炭,则要延长其再生时间。对氨基苯磺酸而言,CO2超临界流体法再生的最佳温度为308K,当温度超过308K时,再生不受影响;当流速大于1.47×10-4m/s时,流速不影响再生;用HCl溶液处理后,会使活性炭再生效果显著改善。对苯而言,再生效率在低压下随温度的下降而降低;在16.0MPa压力时的最佳再生温度为318K;在实验流速下,再生效率会随流速加快而提高。
由于活性炭热再生需要将全部活性炭、被吸附物质及大量的水份都加热到较高的温度,有时甚至达到汽化温度,因此能量消耗很大,且工艺设备复杂。其实,如在活性炭的吸附表面上施加能量,使被吸附物质得到足以脱离吸附表面,重新再回到溶液中去的能量,就能够达到再生活性炭的目的。超声波再生就是针对这一点而提出的。超声再生的最大特点是只在局部施加能量,而不需将大量的水溶液和活性炭加热,因而施加的能量很小。
研究表明经超声波再生后,再生排出液的温度仅增加2~3℃。每处理1L活性炭采用功率为50W的超声发生器120min,相当于每m3活性炭再生时耗电100kWh,每再生一次的活性炭损耗仅为干燥质量的0.6%~0.8%,耗水为活性炭体积的10倍。但其只对物理吸附有效,再生效率仅为45%左右,且活性炭孔径大小对再生效率有很大影响。微波辐照再生法
是在热再生法基础上发展起来的活性炭再生技术。其原理是以电为能源,利用微波辐照加热实现再生。试验中的最佳再生效率出现在功率为HI(W),辐照时间约为80s时。比较极差S可知,对再生后活性炭碘值恢复影响最大的是微波功率,其次是辐照时间,最后是活性炭的吸附量。微波辐照法再生活性炭的时间短。能耗低、设备构造简单,具备比较好的应用前景。然而,在微波加热使有机物脱附过程中,是否有其它的中间产物产生等问题还有待于进一步研究。
传统湿式氧化法再生效率不高,能耗较大。再生温度是影响再生效率的根本原因,但提高再生温度会增加活性炭的表面氧化,以此来降低再生效率。因此,人们考虑借助高效催化剂,采用催化湿式氧化法再生活性炭。同济大学水环境控制与资源化研究国家重点实验室的科研人员正在开展此方面的研究。随着可持续发展观念的深入人心,活性炭再生工艺与技术日益得到人们的重视。一些传统的活性炭再生技术与工艺在近几年有了新的改进与突破。同时新再生技术也在不断涌现。虽然这些新兴技术在工艺路线上还不成熟,尚无法投入工业使用。但它们的出现为活性炭的再生带来了新思路与新探讨。
本网站尊重并保护知识产权,假如发现您的权益受到侵害,请立即提交反馈,我们会尽快为您处理
电话:186-3866-9716 邮箱:603563544@qq.com 地址:河南省巩义市